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This study presents a novel method to analyze the vibration of an elastically mounted
concentrated mass supported on the joint of symmetrically crossed beams with #exible
foundation. Analytical and exact solutions of the free and forced vibration responses of the
system are also derived. Herein, the dynamics of the mounted mass and the crossed beams
are expressed as two-way state-#ow (TWSF) graph models, in which the interactions
between the components are considered. Based on the proposed model, the frequency
responses of the displacement of the mounted mass and every beam are derived using
a topological method. Moreover, the force transmissibility from the vibrating mass to the
foundation and the frequency equation are obtained. The derived results are expressed in
both analytical and closed forms. Also presented herein are some special cases including
identical structure properties for each beam, simply supported boundary for each beam,
mass directly mounted on the beams, and their combinations.
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1. INTRODUCTION

Free and forced vibrations of engines and motors mounted on structure elements is
a critical problem in mechanical, aircraft and naval engineering. The design objectives focus
mainly on preventing the vibrating frequency from meeting the natural frequency of the
combined system and reducing the force transmitted from the vibrating source to the
foundation. The vibration behavior and transmissibility of a concentrated mass mounted
on single- and multiple-degree-of-freedom lumped isolator systems have received
considerable interest [1}4]. Analytical and numerical methods for obtaining the
fundamental frequency and mode shape of a single beam carrying a concentrated mass in
free vibration condition have also been presented [1, 5}8]. While considering the e!ect of
the isolation system between the vibrating machine and the supporting structure, related
studies have examined free vibrations of a beam carrying elastically mounted masses
[9}11]. Moreover, other investigators have elucidated the forced transverse vibration
response and the force transmissibility subjected to excitation force on the mounted
concentrated mass on a beam [12}14]. Although previous studies commonly considered the
single beam structure, vibrating engines supported by multiple crossed beams are normally
used in practical design. The vibration behavior of a system is a!ected by the dynamic
interaction not only between the mounted mass and supported beams but also between one
beam and another. Moreover, the #exibility of the foundation for each beam is combined
into the dynamics of a system. Owing to the complexity of these dynamic interactions, using
conventional methods to obtain the analytical results for the free and forced vibrations of
this problem is extremely di$cult.
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In the light of the above developments, this work performs free and forced vibration
analysis of crossed beams with a #exible boundary carrying an elastically mounted mass by
using a graph method [3, 4, 15, 16]. A #exible foundation for the supported of each beam is
also considered. First, this study develops TWSF graph models for the beams with #exible
boundary and carrying an elastically mounted mass. Based on the proposed models, the
analytical and closed forms of the frequency responses of the mounted mass and each beam,
the force transmissibility and the frequency equation of multiple crossed beams are derived.
Also studied herein are some simpli"ed cases, such as identical structure properties for each
beam, simply supported boundary for each beam, and vibrating mass directly mounted on
the beams structure. Two numerical examples are presented to demonstrate how the
proposed method is implemented.

2. TWSF GRAPH MODELS

An elastically mounted concentrated mass (the primary system) supported on the joint of
symmetrically crossed beams structure as shown in Figure 1 is considered. As assumed
herein, each beam is uniform and joined at the midpoint. The ends of each beam are
connected to the #exible foundation, which is modelled as the combination of the linear
spring and dashpot damper. In this study, the primary system and the beams system are
regarded as two coupled subsystems. The dynamics of both subsystems can be "rst analyzed
individually and, then, the interaction e!ect between both subsystems is included to obtain
the dynamic response of the coupled system.

If the mass of the primary system is subject to the sinusoidal varying excitation F
e
e+wt,

where F
e
is the amplitude of the excitation force, the displacement and force response of each

beam and the primary system should also be harmonic with the same frequency. For the
primary system, the relationship between the displacement and the force of the mass and
the spring can be expressed as
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where m
d
, c

d
and k

d
are the mass, damping, and sti!ness of the primary system respectively.
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are the complex amplitude of the displacement of the primary system w

d
(t) and

the joint of the beams and w
c
(t), respectively, and F

c
is the complex amplitude of the tension

force f
c
(t) on the spring of the primary system. According to equations (1) and (2), the

dynamics of the primary system can be described as a TWSF graph model, as shown in
Figure 2.

For the ith beam, the beam is uniform and crossed at the midpoint. Thus, the transverse
vibration of the beam is symmetric. Considering half-length of the beam in the analysis is
su$cient. Since no load acts between the midpoint and the ends of each beam, the
governing equation for small amplitude vibration of the beam is given by [12]
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where w
i
(t) is the beam's displacement at the cross-section x

i
, E

i
in Young's modulus of

beam i, I
i
is the moment of inertia of the beam, m

i
is the mass per unit length of the beam,

and b
i
is the half-length of the beam. The solution of equation (3) can be calculated by

separation of variables. Thus, the amplitude of the response of the beam can be expressed in



Figure 1. Crossed beams structure carrying an elastically mounted mass.
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the following form:
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is the complex amplitude of the displacement response at location x

i
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Notably, the slope at the midpoint of the beam is zero since the vibration response of the
beam is symmetric. In addition, only translational #exibility for both ends of the beam is
considered, while the reaction moment at both ends is zero, such that
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Moreover, the shear force around the center of the beam equals half of the summation
forces acted by the primary system and other beams, denoted as f

c,i
(t). If the complex

amplitude of the displacement at the ends of the beam=
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is given, the constants a
i,1

, a
i,2

,
a
i,3

, and a
i,4

in equation (4) can be expressed by =
b,i

and F
c,i

a
i,1
"!

1

4a3
i
E
i
I
i

F
c,i

, a
i,2
"

1

2c
i

=
b,i
#

s
i

4a3
i
E
i
I
i
c
i

F
c,i

, (8, 9)

a
i,3
"

1

4a3
i
E

i
I
i

F
c,i

, a
i,4
"

1

2ch
i

=
b,i
!

sh
i

4a3
i
E
i
I
i
ch

i

F
c,i

, (10, 11)



Figure 2. TWSF model of the primary system.

Figure 3. Graph model of beam i and its elastic support.
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respectively.
Substituting equations (8)} (11) into equation (4) yields the displacement response of the

beam. According to the results, the complex amplitude of the displacement response at
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the center of the beam can be represented by=
b,i

and F
c,i

. The boundary condition at the
ends of the beam reveals that the shear force at the ends of the beam equals the force acted
by the #exible foundation f

b,i
(t). Thus, the complex amplitudes F

b,i
and F

c,i
are expressed as

follows:
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According to equations (12) and (13), the relationships between F
b,i

, F
c,i

,=
b,i

and=
c
can be

described by a TWSF graph model as shown in the upper part of Figure 3.
For the #exible foundation, a combined model of massless spring and dashpot damper is

assumed. The relationship between the displacement and the force response is given by
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Equation (14) can also be represented as a graph model as shown in the lower portion of
Figure 3.

3. FREE AND FORCED VIBRATION ANALYSIS

3.1. FORCED RESPONSE

The graph model of beam i and its supports shown in Figure 3 indicates that the paths
following the state #ow form a closed loop. There are two forward paths from=

c
to F

c,i
.

Although one forward path touches the loop, the other one does not. Thus, the ratio of the
complex amplitude of the displacement response=

c
to the force response F
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, denoted as

H
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, can be obtained as [3, 4, 16]
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When all of N crossed beams are considered, the force acting on the spring and the
damper of the primary system F

c
equals the summation of the force acting on all beams,

which can be expressed as

F
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. (16)

According to equations (15) and (16), the graph model of the total system can be obtained by
the combination of Figures 2 and 3 as shown in Figure 4.

According to Figure 4, all the transfer functions H
Wc

,F
c,i

can be combined by direct
summation. The reduced graph model contains only two loops. For the combined model,
there is only one forward path from F

e
to=

d
. This forward path touches one of the loops.



Figure 4. Graph model of the combined system.
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Thus, the complex amplitude of the displacement response of the mass of the primary leads
to
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In the same manner, the response of the displacement at the joint=
c
can be calculated.
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Hence, the transfer function H
Fe

,=
c
, de"ned as the ratio of the complex amplitude of the

displacement=
c
to the excitation force F

e
, is given by

H
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e
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In order to calculate the response of each beam, the graph model of the total system can
be rearranged by combining two cascade models: the dynamic coupling of all components



Figure 5. Rearranged graph model for forced vibration analysis.
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of the system and the uncoupling dynamics of each beam and its constraints as shown in
Figure 5. From the rearranged model, the displacement of the ends of each beam=

b,i
can be

obtained
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According to the transfer function, the force transmitted from the ends of each beam to
the foundation F

b,i
is given by
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If responses =
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as shown in equations (20) and (21) are substituted into
equations (8)}(11), the coe$cients of a
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response at each location of the beam is known.
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3.2. FREQUENCY EQUATION

The natural frequency of a structure is normally determined by the homogeneous
solution of the governing equations. The dynamic response enlarges to in"nity for
a harmonic excitation force when the frequency of the force meets the natural frequency of
the system. Thus, the natural frequency can be obtained from the roots of the denominator
of the complex frequency response as given in equation (17). Thus, the frequency equation
can be obtained as
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4. SPECIAL CASES

4.1. N IDENTICAL CROSSED BEAMS

If the length, cross-section, structural properties, and foundation #exibility are the same
for each beam, the transfer function H
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for each i from 1 to N is identical as given by
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When equation (24) is substituted into equations (17) and (18), the complex amplitude of the
displacement of the mounted mass=

d
and the displacement at the joint of the beams=

c
can

be rewritten as follows:
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In the same way, the transfer function H
Fe

,=
c

can be simpli"ed. Since the
structural properties and the boundary conditions of each beam are the same, the complex
amplitude of the displacement of the ends of each beam =

b,i
will be identical and is
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represented as
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Substituting the simpli"ed transfer function into equation (22) yields
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The frequency equation can be determined in the same way and expressed as
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4.2. SIMPLY SUPPORTED BEAMS

If the sti!ness of the foundation is very large, the boundary conditions of each beam can
be modelled as simply supported. The graph model of each beam as shown in Figure 3 can
be modi"ed to "t the assumption. In the modi"ed model, the gain for the dynamics of the
foundation is deleted. Thus, the transfer function H
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When equation (30) is substituted into equations (17) and (18), the complex amplitude of the
displacement of the mounted mass=
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The reduced transfer function HF
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and the frequency equation becomes
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When the structural properties of each simply supported beam are also identical, the
transfer function H
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for each i is the same and given by
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4.3. CONCENTRATED MASS ATTACHED TO CROSSED BEAMS

If the concentrated mass directly attached to the beams structure is considered, the state
#ow passing through the block of !( juc
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)~1 will be neglected. Thus, the

displacement responses of the concentrated mass coincide with that of the joint of each
beam. This section examines four cases for the di!erent conditions.
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If the "rst case considers the #exibility of the foundation, the transfer function H
Fe,Wc

can
be rewritten as

H
Fe,Wc

"1NA!m
d
u2#

N
+
i/1

H
Wc

,F
c ,iB . (40)

By substituting equation (40) into equations (17) and (18), the complex amplitudes=
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are the same and given by
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The force transmissibility ¹
Fe,Fb

becomes
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and the frequency equation is
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In the second case, if the structural properties and #exibility of the foundation are also
identical for each beam, =

d
can be rewritten as follows:
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Thus, the force transmissibility ¹
Fe,Fb

becomes
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and the frequency equation is
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In the third case, both the #exibility of the foundation and the elasticity of the primary
system are considered to be rigid. If the concentrated mass attached to the simply supported
beams is considered, equation (17) can be reduced to
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Then, the force transmissibility ¹
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becomes
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and the frequency equation is
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In the last case, when all simply supported beams of the structure are also identical,
=

d
and the force transmissibility ¹

Fe,Fb
can be reduced to

=
d
"(sN ch!cN sh) /(!m

d
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The frequency equation becomes

!m
d
u2(sN ch!cN sh)#4Na6 3EIcN ch"0. (52)

Equations (50)} (52) for N"1 can be used for the vibration analysis of a single simply
supported beam carrying a concentrated mass. These simpli"ed results are identical to
those derived in reference [12].

5. EXAMPLES

Two examples demonstrate the feasibility of the derived formula for analysis. In the "rst
example, two identical crossed simply supported beams carrying an elastically mounted
mass subjected to force load F

e
sinut on the mass are considered. The damping ratio and

the natural frequency of the primary system are 0)05 and 100 rad/s respectively. The mass
ratio of the mounted mass to each beam, m

d
/(2mN b1 ) is 0)5. If the parameter of each beam

b1 2JmN /EI equals 1/Jg, the frequency variable a6 b1 equals Ju/Jg. The complex amplitude
of the displacement of concentrated mass can be calculated by equation (36), in which a6 3EI



Figure 6. Magnitude of the non-dimensional dynamic response of the mounted mass with #exible supports.

Figure 7. Magnitude of the non-dimensional dynamic response of the mounted mass directly attached on
beams.
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can be rewritten by mN b1 u2/(a6 b1 ). Figure 6 presents the magnitude of the non-dimensional
dynamic response of the mounted mass, de"ned as !>

d
m

d
u2/F

e
.

If the concentrated mass of the "rst example is attached on the cross of beams, the
dynamic response of the structure can be calculated by equation (50). Figure 7 illustrated
the magnitude of the non-dimensional dynamic response of the mounted mass. According
to Figures 6 and 7, a #exible connection between the concentrated mass and the beams can
more e!ectively reduce the forced vibration at a high frequency than a rigid attachment.

6. CONCLUSIONS

This work presents a TWSF graphic model to represent the dynamic interaction of an
elastically mounted mass supported on the beams with a #exible foundation. According to
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the graph model and substructure concept, analytical and closed-form results of the
frequency response of the displacement of each component of the system, the force
transmissibility, and the frequency equation are derived. Also presented herein are some
special cases, including mass directly mounted on the beams, simply supported boundary
support for crossed beams, identical structure properties for each beam, and their
combination. Numerical examples reveal the ease in calculating the dynamic response using
the derived formulae. Results of this study demonstrate the e!ectiveness of the proposed
method in analyzing and designing the isolation structure with a vibrating machine.
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